A Computational Cognitive Model for Semantic Sub-Network Extraction from Natural Language Queries

نویسندگان

  • Suman Deb Roy
  • Wenjun Zeng
چکیده

Semantic query sub-network is the representation of a natural language query as a graph of semantically connected words. Such sub-networks can be identified as sub-graphs in larger ontologies like DBpedia or Google knowledge graph, which allows for domain and concepts identification, especially in noisy queries. In this paper, we present a novel standalone NLP technique that leverages the cognitive psychology notion of semantic forms for semantic subnetwork extraction from natural language queries. Semantic forms, borrowed from cognitive psychology models, are one of the fundamental structures employed by human cognition to construct semantic information in the brain. We propose a computational cognitive model by means of conditional random fields and explore the interaction patterns among such forms. Our results suggest that the cognitive abstraction provided by semantic forms during labelling can significantly improve parsing and sub-network extraction compared to pure lexical approaches like parts of speech tagging. We conduct experiments on approximately 5000 queries from three diverse datasets to demonstrate the robustness and efficiency of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model

Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...

متن کامل

Cognitive Database: A Step towards Endowing Relational Databases with Artificial Intelligence Capabilities

We propose Cognitive Databases, an approach for transparently enabling Artificial Intelligence (AI) capabilities in relational databases. A novel aspect of our design is to first view the structured data source as meaningful unstructured text, and then use the text to build an unsupervised neural network model using a Natural Language Processing (NLP) technique called word embedding. This model...

متن کامل

Meaningfulness of Religious Language in the Light of Conceptual Metaphorical Use of Image Schema: A Cognitive Semantic Approach

According to modern religious studies, religions are rooted in certain metaphorical representations, so they are metaphorical in nature. This article aims to show, first, how conceptual metaphors employ image schemas to make our language meaningful, and then to assert that image-schematic structure of religious expressions, by which religious metaphors conceptualize abstract meanings, is the ba...

متن کامل

Feature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context

Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...

متن کامل

Natural Language Interface on a Video Data Model

Depending on a content-based spatio-temporal video data model, a natural language interface is implemented to query the video data. The queries, which are given as English sentences, are parsed using Link Parser, and the semantic representations of given queries are extracted from their syntactic structures using information extraction techniques. At the last step, the extracted semantic repres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012